Skip to main content

A Billion Miles Under Nuclear Energy (Updated)

And the winner is…Cassini-Huygens, in triple overtime.

The spaceship conceived in 1982 and launched fifteen years later, will crash into Saturn on September 15, after a mission of 19 years and 355 days, powered by the audacity and technical prowess of scientists and engineers from 17 different countries, and 72 pounds of plutonium.

The mission was so successful that it was extended three times; it was intended to last only until 2008.

Since April, the ship has been continuing to orbit Saturn, swinging through the 1,500-mile gap between the planet and its rings, an area not previously explored. This is a good maneuver for a spaceship nearing the end of its mission, since colliding with a rock could end things early.

Cassini will dive a little deeper and plunge toward Saturn’s surface, where it will transmit data until it burns up in the planet’s atmosphere. The radio signal will arrive here early Friday morning, Eastern time. A NASA video explains.

In the years since Cassini has launched, space nuclear power has advanced. NASA is now working on a reactor that would power a base on Mars.

The dramatic end is deliberate; it will eliminate the possibility that the probe could crash on a planet that could support any form of life that stowed away on the spacecraft.

Cassini took seven years to get to Saturn, and then transmitted dramatic pictures of the rings. It confirmed an ocean of water on the moon Enceladus, raising the possibility of life there. It found new rings. Its findings advanced our understanding about the origin of the rings and the nature of the planet.

And it carried the Huygens probe, which was the first man-made object to land on a world in the outer solar system. Huygens landed on the surface of Titan on December 25, 2004.

Cassini above the rings of Saturn.
Cassini above the rings of Saturn.

Nuclear power made it possible. Cassini carries 72.3 pounds of plutonium-238, in a Radioisotope Thermoelectric Generator (RTG). When it was launched on its billion-mile trip, the plutonium put out enough heat to be converted into 878 watts of electricity – about two-thirds of what a hair dryer draws, but sufficient to run the instruments and radios. Twenty years later, it is still putting out about 600 watts, but mission controllers are ending the flight because spacecraft is running out of the chemical propellants used to adjust its orbit, mono-methyl hydrazine and nitrogen tetroxide.

Plutonium-238 was originally produced as a by-product of creating plutonium-239 for nuclear weapons. After the United States stopped making new weapons fuel, it bought some plutonium-238 from Russia. There are several efforts now for making supplies for future space probes.

Sunlight on Saturn is only about 1/80th as strong as on earth, so solar panels are not helpful. Mars is the approximate limit of useful sunlight; some of the rovers on Mars used photo-voltaic panels, but Curiosity used a radio-thermal generator like the one on Cassini. The New Horizons probethat visited Pluto in the summer of 2015 used a similar generator. That generator is still running, as the probe prepares to visit an object in the Kuiper Belt on January 1, 2019.

After Cassini goes, the stunning photos will still be here.

The above is from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

Comments

Popular posts from this blog

How Nanomaterials Can Make Nuclear Reactors Safer and More Efficient

The following is a guest post from Matt Wald, senior communications advisor at NEI. Follow Matt on Twitter at @MattLWald.

From the batteries in our cell phones to the clothes on our backs, "nanomaterials" that are designed molecule by molecule are working their way into our economy and our lives. Now there’s some promising work on new materials for nuclear reactors.

Reactors are a tough environment. The sub atomic particles that sustain the chain reaction, neutrons, are great for splitting additional uranium atoms, but not all of them hit a uranium atom; some of them end up in various metal components of the reactor. The metal is usually a crystalline structure, meaning it is as orderly as a ladder or a sheet of graph paper, but the neutrons rearrange the atoms, leaving some infinitesimal voids in the structure and some areas of extra density. The components literally grow, getting longer and thicker. The phenomenon is well understood and designers compensate for it with a …

Missing the Point about Pennsylvania’s Nuclear Plants

A group that includes oil and gas companies in Pennsylvania released a study on Monday that argues that twenty years ago, planners underestimated the value of nuclear plants in the electricity market. According to the group, that means the state should now let the plants close.

Huh?

The question confronting the state now isn’t what the companies that owned the reactors at the time of de-regulation got or didn’t get. It’s not a question of whether they were profitable in the '80s, '90s and '00s. It’s about now. Business works by looking at the present and making projections about the future.

Is losing the nuclear plants what’s best for the state going forward?

Pennsylvania needs clean air. It needs jobs. And it needs protection against over-reliance on a single fuel source.


What the reactors need is recognition of all the value they provide. The electricity market is depressed, and if electricity is treated as a simple commodity, with no regard for its benefit to clean air o…

Why Nuclear Plant Closures Are a Crisis for Small Town USA

Nuclear plants occupy an unusual spot in the towns where they operate: integral but so much in the background that they may seem almost invisible. But when they close, it can be like the earth shifting underfoot.

Lohud.com, the Gannett newspaper that covers the Lower Hudson Valley in New York, took a look around at the experience of towns where reactors have closed, because the Indian Point reactors in Buchanan are scheduled to be shut down under an agreement with Gov. Mario Cuomo.


From sea to shining sea, it was dismal. It wasn’t just the plant employees who were hurt. The losses of hundreds of jobs, tens of millions of dollars in payrolls and millions in property taxes depressed whole towns and surrounding areas. For example:

Vernon, Vermont, home to Vermont Yankee for more than 40 years, had to cut its municipal budget in half. The town closed its police department and let the county take over; the youth sports teams lost their volunteer coaches, and Vernon Elementary School lost th…