Skip to main content

The Next Big Thing in Nuclear Power: Think Smaller & Safer

Dr. Everett Redmond
The following is a guest post by Dr. Everett Redmond, NEI's Senior Director, Policy Development.

There’s a lot to like about the small modular reactor design that NuScale Power submitted yesterday to the Nuclear Regulatory Commission. Most often people talk about the ability to build such reactors in a factory and ship them by truck or rail, in nearly-finished form, to where they are needed, and to add generating capacity to a plant in modest increments, as demand grows. But it’s easy to overlook another strength of the NuScale design: one of its intrinsic features is a simple way to enhance the safety of the reactor fuel.

There’s a fancy name for this feature: a high surface-to-volume ratio. In plain English, as a container gets smaller, its surface area gets larger relative to its volume, a phenomenon obvious to anyone who cooks. Take a hardboiled egg out of the pot of boiling water and put it into a bowl of cold water, and the egg cools very quickly. It does that because the water draws away the heat much faster than air could, and the area of the egg shell is relatively large compared to volume of the egg. Contrast this with a boiled potato that would take longer to cool because its surface area is smaller in comparison to its volume.
Cooling the NuScale SMR is like chilling a hard boiled egg.*
The NuScale module’s core is about one-twentieth the size of a standard large unit. The NuScale cores each sit in their own containment, a vessel a little like a thermos bottle. The containments are submerged in a huge pool of water. Like a thermos, the NuScale design uses a vacuum between the inner wall and the outer wall of its containment vessel, so the reactor can produce steam without heating up the surrounding water.

If there’s a problem, valves will break the vacuum and the steam from the reactor will flow into that vacuum space, and condense into water. So that space, which used to be a vacuum, and insulating layer, will become filled with water which will conduct heat away from the core. The heat will naturally travel through that water and to the outer wall of the module, and from there into the pool. The heat will bleed away fast enough so that the core can’t heat up to the point of damaging the fuel.

That principle leads to other advantages. The design is intended to be “walk-away safe,” with no short-term actions required by the operators. And existing reactors keep safety-grade backup diesel generators on site, but NuScale does not need these, because it doesn’t need the electricity to pump water or run mechanical systems to draw away heat. In fact this simple design does not use pumps when running normally to move the useful heat out of the core so it can be turned into electricity; that happens through natural convection.

Of course, an inherently safe design is always a good idea. But there’s another advantage here. The NRC has yet to evaluate NuScale’s application, but NuScale’s engineering shows that the emergency planning zone for its plant should extend only as far as the plant fence. The reactor can be located close to where electricity is needed the most.

That will make the NuScale reactor a good candidate for replacement power at old fossil-fueled sites in the United States, and in fast-growing cities around the world that do not have adequate electric local generation or a strong power grid to carry in power from distant places.

*Photo by Andrea Nguyen, provided under a Creative Commons license.

Comments

Popular posts from this blog

Sneak Peek

There's an invisible force powering and propelling our way of life.
It's all around us. You can't feel it. Smell it. Or taste it.
But it's there all the same. And if you look close enough, you can see all the amazing and wondrous things it does.
It not only powers our cities and towns.
And all the high-tech things we love.
It gives us the power to invent.
To explore.
To discover.
To create advanced technologies.
This invisible force creates jobs out of thin air.
It adds billions to our economy.
It's on even when we're not.
And stays on no matter what Mother Nature throws at it.
This invisible force takes us to the outer reaches of outer space.
And to the very depths of our oceans.
It brings us together. And it makes us better.
And most importantly, it has the power to do all this in our lifetime while barely leaving a trace.
Some people might say it's kind of unbelievable.
They wonder, what is this new power that does all these extraordinary things?

A Design Team Pictures the Future of Nuclear Energy

For more than 100 years, the shape and location of human settlements has been defined in large part by energy and water. Cities grew up near natural resources like hydropower, and near water for agricultural, industrial and household use.

So what would the world look like with a new generation of small nuclear reactors that could provide abundant, clean energy for electricity, water pumping and desalination and industrial processes?

Hard to say with precision, but Third Way, the non-partisan think tank, asked the design team at the Washington, D.C. office of Gensler & Associates, an architecture and interior design firm that specializes in sustainable projects like a complex that houses the NFL’s Dallas Cowboys. The talented designers saw a blooming desert and a cozy arctic village, an old urban mill re-purposed as an energy producer, a data center that integrates solar panels on its sprawling flat roofs, a naval base and a humming transit hub.

In the converted mill, high temperat…

Seeing the Light on Nuclear Energy

If you think that there is plenty of electricity, that the air is clean enough and that nuclear power is a just one among many options for meeting human needs, then you are probably over-focused on the United States or Western Europe. Even then, you’d be wrong.

That’s the idea at the heart of a new book, “Seeing the Light: The Case for Nuclear Power in the 21st Century,” by Scott L. Montgomery, a geoscientist and energy expert, and Thomas Graham Jr., a retired ambassador and arms control expert.


Billions of people live in energy poverty, they write, and even those who don’t, those who live in places where there is always an electric outlet or a light switch handy, we need to unmake the last 200 years of energy history, and move to non-carbon sources. Energy is integral to our lives but the authors cite a World Health Organization estimate that more than 6.5 million people die each year from air pollution.  In addition, they say, the global climate is heading for ruinous instability. E…