Skip to main content

What Is “Cold Shutdown?”

Several news articles late this week have reported that Japan’s Fukushima Daiichi nuclear plant may be in “cold shutdown” by mid-December. Although the reports are mostly accurate, there is a difference between the traditional “cold shutdown” of a nuclear plant and what is happening at Fukushima.

First, what is cold shutdown? The U.S. Nuclear Regulatory Commission defines it as:

The term used to define a reactor coolant system at atmospheric pressure and at a temperature below 200 degrees Fahrenheit following a reactor cooldown.

In non-nuclear speak, it basically means the conditions within the nuclear reactor are such that it would be impossible for a chain reaction to occur. This term usually comes into play whenever a reactor is shut down periodically for refueling or for the final time prior to the long-term before it is decommissioned. When a reactor is in cold shutdown, the reactor pressure vessel (RPV) can be safely opened with great care and additional water is added to the cavity above the vessel for shielding to permit safe handling of the fuel for refueling (replacing depleted fuel elements) or defueling (removing the entire core).

C:\WINDOWS\Desktop\Text\03 with colored photos.wpdIn Fukushima Daiichi’s case, achieving the strict definition of “cold shutdown” is not possible because the RPVs have been breached. This means that the RPVs will not hold water (currently the cooling water is flowing through them) and some of the melted fuel may not be in the vessel, but rather on the floor below, which is still within the primary containment. To clean up the plant, Tokyo Electric Power Company (TEPCO), the plant’s owner and operator, will work with the Japanese government and other parties to develop a long-term plan that will include removing the damaged fuel.

TEPCO understood this important nuance to achieving “cold shutdown” early on this year when it developed its initial recovery plans and developed a new term, “cold shutdown condition,” which applies to how they are bringing the reactors to stable condition. Their definition is as follows:

  • Temperature of RPV bottom is, in general, below 100 degrees Celsius.
  • Release of radioactive materials from PCV is under control and public radiation exposure by additional release is being significantly held down. (Not exceed 1 mSv/y at the site boundary as a target.)

By their definition, the Fukushima Daiichi reactors will reach “cold shutdown condition” once they are below boiling point and are no longer releasing significant amounts of radiation into the atmosphere. This new definition, thus, has an important distinction between the more commonly used “cold shutdown,” which typically takes place at a nuclear plant under normal conditions.

Reaching “cold shutdown conditions” at Fukushima Daiichi, however, has been an extremely difficult task for TEPCO workers given the conditions at the site and is a very significant milestone in their recovery efforts. TEPCO expects to reach this condition in just a few weeks by the end of 2011.

Graphic: Schematic of Reactor Design at Fukushima Daiichi

Comments

Anonymous said…
The NRC definition is different than the Tech Spec definition of CSD. Atmospheric pressure is not a TS requirement, I hope. We'd always be in 3.0.4 the second we exceeded 1 psig.

Popular posts from this blog

An Ohio School Board Is Working to Save Nuclear Plants

Ohio faces a decision soon about its two nuclear reactors, Davis-Besse and Perry, and on Wednesday, neighbors of one of those plants issued a cry for help. The reactors’ problem is that the price of electricity they sell on the high-voltage grid is depressed, mostly because of a surplus of natural gas. And the reactors do not get any revenue for the other benefits they provide. Some of those benefits are regional – emissions-free electricity, reliability with months of fuel on-site, and diversity in case of problems or price spikes with gas or coal, state and federal payroll taxes, and national economic stimulus as the plants buy fuel, supplies and services. Some of the benefits are highly localized, including employment and property taxes. One locality is already feeling the pinch: Oak Harbor on Lake Erie, home to Davis-Besse. The town has a middle school in a building that is 106 years old, and an elementary school from the 1950s, and on May 2 was scheduled to have a referendu

Why Ex-Im Bank Board Nominations Will Turn the Page on a Dysfunctional Chapter in Washington

In our present era of political discord, could Washington agree to support an agency that creates thousands of American jobs by enabling U.S. companies of all sizes to compete in foreign markets? What if that agency generated nearly billions of dollars more in revenue than the cost of its operations and returned that money – $7 billion over the past two decades – to U.S. taxpayers? In fact, that agency, the Export-Import Bank of the United States (Ex-Im Bank), was reauthorized by a large majority of Congress in 2015. To be sure, the matter was not without controversy. A bipartisan House coalition resorted to a rarely-used parliamentary maneuver in order to force a vote. But when Congress voted, Ex-Im Bank won a supermajority in the House and a large majority in the Senate. For almost two years, however, Ex-Im Bank has been unable to function fully because a single Senate committee chairman prevented the confirmation of nominees to its Board of Directors. Without a quorum

NEI Praises Connecticut Action in Support of Nuclear Energy

Earlier this week, Connecticut Gov. Dannel P. Malloy signed SB-1501 into law, legislation that puts nuclear energy on an equal footing with other non-emitting sources of energy in the state’s electricity marketplace. “Gov. Malloy and the state legislature deserve praise for their decision to support Dominion’s Millstone Power Station and the 1,500 Connecticut residents who work there," said NEI President and CEO Maria Korsnick. "By opening the door to Millstone having equal access to auctions open to other non-emitting sources of electricity, the state will help preserve $1.5 billion in economic activity, grid resiliency and reliability, and clean air that all residents of the state can enjoy," Korsnick said. Millstone Power Station Korsnick continued, "Connecticut is the third state to re-balance its electricity marketplace, joining New York and Illinois, which took their own legislative paths to preserving nuclear power plants in 2016. Now attention should